题目详情

如图,空间直角坐标系中,四棱锥P-OABC的底面是边长为√2的正方形,且底面在xOy平面内,点B在y轴正半轴上,PB⊥平面OABC,侧棱OP与底面所成角为45°

image.png

(1)若N(x,y,0)是顶点在原点,且过A、C两点的抛物线上的动点,试给出x与y满足的关系式;

(2)若M是棱OP上的一个定点,它到平面OABC的距离为a (0<a<2 ),写出M、N两点之间的距离d(x),并求d(x)的最小值;

(3)是否存在一个实数a (0<a<2 ),使得当d(x)取得最小值时,异面直线MN与OB互相垂直?请说明理由;

正确答案及解析

正确答案

QQ截图20220419114013.png

image.png

解析
暂无解析

包含此试题的试卷

你可能感兴趣的试题

问答题

设函数 f(x) =|3x﹣ 6|+2|x+1|﹣ m(m∈R).

(1) 当 m=2 时, 解不等式 f(x) >12;

(2) 若关于 x 的不等式 f(x) +|x+1|≤0 无解, 求 m 的取值范围.

查看答案
问答题

image.png

image.png

image.png

查看答案
问答题

image.png

image.png

查看答案
问答题

image.png

image.png

查看答案
问答题

如图, 四棱锥 P﹣ ABCD 的底面 ABCD 是平行四边形, PA⊥底面 ABCD, PA=AD=4, ∠BAD=120° , 平行四边形 ABCD 的面积为4√3, 设 E 是侧棱 PC 上一动点.

(1) 求证: CD⊥AE;

(2) 当 E 是棱 PC 的中点时, 求点 C 到平面 ABE 的距离.

image.png

查看答案

相关题库更多 +